A General Construction for Space-filling Latin Hypercubes
نویسنده
چکیده
Abstract: We propose a general method for constructing Latin hypercubes of flexible run sizes for computer experiments. The method makes use of arrays with a special structure and Latin hypercubes. By using different such arrays and Latin hypercubes, the proposed method produces various types of Latin hypercubes including orthogonal and nearly orthogonal Latin hypercubes, sliced Latin hypercubes and Latin hypercubes in marginally coupled designs. In addition, the proposed algebraic design construction is particularly efficient as it does not need any optimization search but still produces Latin hypercubes whose space-filling properties are comparable with those generated by the common and latest methods in the literature.
منابع مشابه
Efficient Nearly Orthogonal and Space-Filling Latin Hypercubes
This article presents an algorithm for constructing orthogonal Latin hypercubes, given a fixed sample size, in more dimensions than previous approaches. In addition, we detail a method that dramatically improves the space-filling properties of the resultant Latin hypercubes at the expense of inducing small correlations between the columns in the design matrix. Although the designs are applicabl...
متن کاملOptimal orthogonal-array-based latin hypercubes
The use of optimal orthogonal array latin hypercube designs is proposed. Orthogonal arrays were proposed for constructing latin hypercube designs by Tang (1993). Such designs generally have better space filling properties than random latin hypercube designs. Even so, these designs do not necessarily fill the space particularly well. As a result, we consider orthogonal-array-based latin...
متن کاملMaximum projection designs for computer experiments BY V. ROSHAN JOSEPH, EVREN GUL
Space-filling properties are important in designing computer experiments. The traditional maximin and minimax distance designs consider only space-filling in the full-dimensional space; this can result in poor projections onto lower-dimensional spaces, which is undesirable when only a few factors are active. Restricting maximin distance design to the class of Latin hypercubes can improve one-di...
متن کاملConstruction of Orthogonal Nearly Latin Hypercubes
Orthogonal Latin hypercubes (OLHs) are available for only a limited collection of run sizes. This paper presents a simple algorithm for constructing orthogonal designs that are nearly Latin hypercubes. The algorithm is based on the approach developed by Steinberg and Lin for OLH designs and can generate designs for all run sizes for which a Plackett-Burman design exists. The designs have good u...
متن کاملOn the Structure of Orthogonal Latin Hypercubes
The structure of orthogonal Latin hypercubes(OLH) is established in vector space over GF(2). An upper bound on the number of columns of an OLH is given. An OLH whose number of columns reaches the upper bound are found for m = 3 and m = 4, while the cases for m 5 are still unknown.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015